Collaborative artificial bee colony k-mean clustering algorithm for mixed data set
نویسندگان
چکیده
منابع مشابه
An Improved K-Means with Artificial Bee Colony Algorithm for Clustering Crimes
Crime detection is one of the major issues in the field of criminology. In fact, criminology includes knowing the details of a crime and its intangible relations with the offender. In spite of the enormous amount of data on offenses and offenders, and the complex and intangible semantic relationships between this information, criminology has become one of the most important areas in the field o...
متن کاملArtificial Bee Colony Algorithm Integrated with Fuzzy C-mean Operator for Data Clustering
Clustering task aims at the unsupervised classification of patterns in different groups. To enhance the quality of results, the emerging swarm-based algorithms now-a-days become an alternative to the conventional clustering methods. In this study, an optimization method based on the swarm intelligence algorithm is proposed for the purpose of clustering. The significance of the proposed algorith...
متن کاملFuzzy clustering with artificial bee colony algorithm
In this work, performance of the Artificial Bee Colony Algorithm which is a recently proposed algorithm, has been tested on fuzzy clustering. We applied the Artificial Bee Colony (ABC) Algorithm fuzzy clustering to classify different data sets; Cancer, Diabetes and Heart from UCI database, a collection of classification benchmark problems. The results indicate that the performance of Artificial...
متن کاملElite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملAn Artificial Bee Colony Algorithm for the Set Covering Problem
In this paper, we present a new Artificial Bee Colony algorithm to solve the non-unicost Set Covering Problem. The Artificial Bee Colony algorithm is a recent metaheuristic technique based on the intelligent foraging behavior of honey bee swarm. Computational results show that Artificial Bee Colony algorithm is competitive in terms of solution quality with other metaheuristic approaches for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-899X
DOI: 10.1088/1757-899x/1070/1/012065